Kyushu University

九州大学 湯浅研究室

Yuasa Laboratory, Kyushu University

Your Image
論文

論文

番号 情報
2025年
35 Tsz Chung Cheng, Lin Zhang, Yuichiro Kurokawa, Ryuta Satone, Kazuhiko Tokunaga & Hiromi Yuasa, Computational study of skyrmion stability and transport on W/CoFeB, Scientific Reports 15, 7708 (2025).
34 K. Tokunaga, Y. Kurokawa, L. Zhang, and H. Yuasa, High spin–orbit torque efficiency in Pt/Co/Tb/W repetition structures with broken spatial inversion symmetry, J. Phys. D: Appl. Phys. 58, 135004 (2025).
33 Y. Kurokawa, K. Yamada, K. Tanabe, H. Matsui, H. Yuasa, All chemically fabricated Co-Pt nanoparticle spin thermoelectric generator on plastic sheet, Next Materials 8, 100520 (2025).
2024年
32 C. Liu, Y. Kurokawa, N. Hashimoto, T. Tanaka, H. Yuasa, Biquadratic magnetic coupling effect in CoPt/Cr/Fe90Co10 orthogonal structures, Jpn. J. Appl. Phys. 63, 02SP32 (2024).
2023年
31 Yuichiro Kurokawa, Keisuke Yamada, and Hiromi Yuasa, Inkjet-Printed Flexible Spin Seebeck Thermopile Device for Low-Cost Spintronics Device Fabrication, Adv. Eng. Mater. 2023 2301069 (2023).
30 U. Kamihoki, Y. Kurokawa, M. Fujimoto, H. Yuasa; Inversion symmetry breaking in spin?orbit torque-induced magnetization switching to improve the recording density of multi-level magnetoresistive random-access memory; J. Appl. Phys. 133, 143902 (2023)
29 C. Liu, Y. Kurokawa, N. Hashimoto, T. Tanaka, H. Yuasa; High-frequency spin torque oscillation in orthogonal magnetization disks with strong biquadratic magnetic coupling; Scientific Reports 13, 3631 (2023)
28 Yuichiro Kurokawa, Hiromi Yuasa; Operating characteristics of domain walls in perpendicularly magnetized ferrimagnetic cylindrical nano-wires for three-dimensional magnetic memory; Jpn. J. Appl. Phys. 62, SC1070 (2023)
27 Begona Abad et al.; The 2022 applied physics by pioneering women: a roadmap; J. Phys. D: Appl. Phys. 56 073001 (2023)
2022年
26 Y. Kurokawa, Y. Tahara, Y. Hamada, M. Fujimoto, H. Yuasa; Scalable spin Seebeck thermoelectric generation using Fe-oxide nanoparticle assembled film on flexible substrate; Scientific Reports 12, 16605 (2022)
25 C. Martin Valderrama et al.; Sensitivity and reproducibility of transverse magneto-optical Kerr effect (T-MOKE) ellipsometry; J. Phys. D: Appl. Phys. 55, 435007 (2022)
24 Y. Kurokawa et al.; Ultra-wide-band millimeter-wave generator using spin torque oscillator with strong interlayer exchange couplings; Scientific Reports 12, 10849 (2022)
23 Yuichiro Kurokawa et al.; Inactivation of damping-like torque in Tb-Gd-Fe film on Ta layer; Jpn. J. Appl. Phys. 61, SC1025 (2022)
22 T. Yamauchi, Y. Hamada, Y. Kurokawa, H. Yuasa; Anomalous Nernst effect dependence on composition in Fe100?XRhX alloys; Jpn. J. Appl. Phys. 61, SC1019 (2022)
21 C. Liu, Y. Kurokawa et al.; Spin Transfer Torque Oscillation in Orthogonal Magnetization Disks; IEEE Trans. Mag. 58, 4100305 (2022)
2021年
20 Y. Hamada, Y. Kurokawa et al.; Anomalous Nernst effect in Fe?Si alloy films; Appl. Phys. Lett. 119 152404 (2021)
19 C. Martin Valderrama et al.; Insertion layer magnetism detection and analysis using transverse magneto-optical Kerr effect (T-MOKE) ellipsometry; J. Phys. D: Appl. Phys. 54 435002 (2021)
18 K. Yamada et al.; Change of longitudinal spin Seebeck voltage with annealing in Y3Fe5O12 films formed by densely packed nanocrystals; J. Magn. Magn. Mater. 535 168093 (2021)
17 N. Hashimoto et al.; Direct observation of magnetic process in quasi-antiferromagnet by high-resolution Kerr microscopy; Jpn. J. Appl. Phys. 60 SBBI05 (2021)
2020年
16 T. Niimura et al.; Influence of interface layer insertion on the spin Seebeck effect and the spin Hall magnetoresistance of Y3Fe5O12/Pt bilayer systems; Phys. Rev. B 102 094411 (2020)
15 A. Mitsuda et al.; Pressure Effects on Magnetic and Transport Properties in CoFe-Based Spin Valve; Materials Trans. 61 1483-1486 (2020)
14 H. Li et al.; Composition dependence of spin Seebeck voltage in YIG/Pt100?XRuX, Pt100?XCuX, and Pt100?X(Cu0.5Ru0.5)X; Jpn. J. Appl. Phys. 59 073001 (2020)
13 H. Yuasa; Fabrication of spin torque devices by using quasi-antiferromagnetic materials; Impact, Volume 2020, Number 1, pp. 79-81 (2020)
12 S. Horiike et al.; Magnetic dynamics of Quasi-antiferromagnetic layer fabricated by 90 degrees magnetic coupling; Jpn. J. Appl. Phys. 59 SGGI02-1~6 (2020)
11 Y. Zhong et al.; Determination of fine magnetic structure of magnetic multilayer with quasi antiferromagnetic layer by using polarized neutron reflectivity analysis; AIP Advances 10 015323-1~6 (2020)
2019年
10 黒川雄一郎 et al.; 電流誘起磁壁移動現象を用いたロジック回路の作製; 信学技報(IEICE Technical Report), vol. 119, no. 232, MRIS2019-20 (2019); pp. 33-37
9 新村拓未 et al.; 各種磁性層を挿入したYIG/Ptのスピンホール磁気抵抗効果; 信学技報(IEICE Technical Report) vol. 119, no. 232, MRIS2019-17 (2019); pp. 9-12
8 若江将和 et al.; 希土類磁性体を用いた無磁場中スピンオービットルク化反転; 信学技報(IEICE Technical Report), vol. 119, no. 232, MRIS2019-15 (2019); pp. 1-5
7 F. Nakata et al.; Spin Seebeck voltage enhancement by Mn system metals insertion at the interface between YIG and nonmagnetic layer; Jpn. J. Appl. Phys. 58 SBBI04-1-5 (2019)
6 M. Wakae et al.; Observation of spin?orbit torque-induced magnetization switching in Gd-Fe perpendicular magnetized wire with in-plane exchange bias field; Jpn. J. Appl. Phys. 58 SBBI02-1-4 (2019)
5 K. Yamada et al.; Observation of Longitudinal Spin Seebeck Voltage in YIG Films Chemically Prepared by Co-Precipitation and Spin Coating; IEEE Trans. Mag. 55, 451004 (2019)
4 Y. Kurokawa et al.; Spin orbit torque driven current-induced domain wall motion in Gd?Fe magnetic wires; Jpn. J. Appl. Phys. 58 030905-1-4 (2019)
2018年~
3 H. Yuasa et al.; Spin Seebeck coefficient enhancement by using Ta50W50 alloy and YIG/Ru interface; J. Phys. D: Appl. Phys. 51 134002 (2018)
2 H. Yuasa et al.; Spin mixing conductance enhancement by increasing magnetic density; AIP ADVANCES 7 55928 (2017)
1 中村瞭平 et al.; YIG/Pt界面への強磁性層挿入によるスピンミキシングコンダクタンス制御; 信学技報(IEICE Technical Report) vol. 116 No. 258 (2016); pp. 31-34